The Nag Hammadi Codices Editing Project of the American Research Center in Egypt has marked a crucial chapter in the history of a remarkable collection of ancient manuscripts. These twelve papyrus codices and part of a thirteenth, apparently discovered by a farmer in the vicinity of the Upper Egyptian city of Nag Hammadi near the end of 1945 and now kept at the Coptic Museum in Old Cairo, date roughly to the latter half of the fourth century CE. They are among the oldest well-preserved examples of the papyrus codex to have survived the centuries, specimens from the very heart of the epoch-making transition from the scroll to the codex as the standard form for a book. They contain Coptic translations of fifty-one Greek texts, thirty-six of which were

* Please note that the bibliographical details for works referred to below by author and date appear at the end of this report.

1 A full and authoritative account of this rather complicated history is being prepared by James M. Robinson for publication in The Facsimile Edition of the Nag Hammadi Codices: Introduction (Leiden: Brill, scheduled to appear in 1979). See also Dorese (1958–1959) and the revised and expanded English translation of this work, Dorese (1960), Robinson (1967/68), (1972b) and (1977a). A more popular account is given by Dart (1976).

2 For the most recent information on the site and the discovery see Robinson (1976).

3 See especially Barns (1975, 12).

4 For the historical context to which the development of the codex form is relevant see the stimulating study by Roberts (1954) and the article by Skeat (1969).

5 At least two further texts may be represented. The largest unplaced fragments of codex XII (see The Facsimile Edition of the Nag Hammadi Codices: Codices XI, XII and XIII [Leiden: Brill, 1973] pl. 101/102, fragments 1 and 2) have not yet been identified with either of the two known texts in that codex and may therefore represent a fifty-second text. Faint traces of ink beneath the decorative line marking the presumed end of The Tripartite Tractate in codex I (p. 138) may be the beginning of a fifty-third text, which could have extended as far as p. 142 of the codex (see Emmel [1977a]). That at least the immediate sources of the Coptic texts were in Greek is not seriously disputed by scholars. That
previously unknown in any form, and represent a selection of works composed at
different times across the first three or four centuries of our era and in vari-
ous parts of the Hellenistic world. (See fig. 1-2.)

Why and by whom these texts were collected together in Coptic is
far from clear. For although they display an overall interest in the esoteric
aspect of the religious ferment that washed across the Roman Empire in the early
centuries of this era, no one doctrinal position unifies their content and no
single theme clearly underlies their presentation. Rather, they cast a diffuse
and welcome light into several of the darker corners of the religious specula-
tion out of which Christianity emerged as a potent cultural force. (See Appen-
dix I: Table of Texts in the Nag Hammadi Codices.)

It is to the difficult investigation of gnosticism that the Nag
Hammadi codices make their largest contribution. Previously known almost en-
tirely from the reports of early Christian theologians who sought to refute
them, the gnostics' views on the creation of the world and on the nature and
destiny of man can now be studied at first hand in most of the texts from Nag
Hammadi. The texts display the rather bewildering diversity of ideas that is
itself characteristic of gnosticism and several different types of gnostic
thought are represented. One text, though clearly gnostic, polemizes both
against catholic Christianity and against other gnostic groups as well! This
new wealth of primary sources has reopened important questions about the origin
and nature of gnosticism and, more importantly, about its evolutionary interac-
tion with early Christianity.

But not all of the Nag Hammadi texts are gnostic. A few reflect
more or less orthodox early Christian views. Some derive from the Hermetic
tradition. One has been identified as a short section from Plato's Republic.

Semitic sources lay behind some of those Greek texts remains a possibility, espe-
cially in the case of The Gospel According to Thomas. (See, for example, Guilla-
umont [1958]. Nagel [1969a] attempts to illuminate some obscure passages in Tho-
mas by supposing that it was translated directly from Aramaic into Coptic.)

6 The apparent lack of unity among the texts has led some scholars to
question the general acceptance of the codices as a group or "library." There
is, as yet, no firm evidence to prove that they were ever considered as such in
antiquity. (See further Appendix II: The Scribes Who Copied the Nag Hammadi
Codices.) Nevertheless, this diversity of content exists not only among the
codices but even among the texts within an individual codex. Various attempts
to account for this have been made by Säve-Söderbergh (1967, esp. pp. 552-553
and 559-560) and (1975) and by Frederik Wisse (1971, esp. pp. 219-222) and
"Gnosticism and Early Monasticism in Egypt" to appear in Gnostik: Festeschrift
für Hans Jonas (Göttingen and Zürich: Vandenhoeck und Ruprecht, in press). Wisse
argues that the texts are unified by a strict ascetic tendency.

7 A comprehensive bibliography of studies on gnosticism in general and on
the Nag Hammadi texts in particular has been prepared by Scholer (1971). The
bibliography is supplemented annually in the autumn issue of Novum Testamentum
beginning with vol. 13 (1971). For a stimulating introduction to gnostic
thought see Jonas (1963).
Fig. 1. The Gebel el-Tarif is a section of the eastern wall of the Nile Valley across the river from the modern city of Nag Hammadi in Upper Egypt. All the evidence concerning the discovery of the Nag Hammadi codices indicates that they were found hidden in a ceramic jar somewhere at the base of this imposing cliff.

Fig. 2. Most of the Nag Hammadi codices arrived at the Coptic Museum in Old Cairo still bound into their leather covers. No member of the Nag Hammadi Codices Editing Project ever saw them thus.
Fig. 1. The Gebel el-Tarif is a section of the eastern wall of the Nile Valley across the river from the modern city of Nag Hammadi in Upper Egypt. All the evidence concerning the discovery of the Nag Hammadi codices indicates that they were found hidden in a ceramic jar somewhere at the base of this imposing cliff.

Fig. 2. Most of the Nag Hammadi codices arrived at the Coptic Museum in Old Cairo still bound into their leather covers. No member of the Nag Hammadi Codices Editing Project ever saw them thus.
As source material for the early history of Christian thought and literature the Nag Hammadi codices are clearly invaluable.

The goal of the Nag Hammadi Codices Editing Project, funded by the Smithsonian Institution from July 1974 through January 1975 and again in July and August 1975, has been to further the study of the manuscripts in three respects: physical reconstruction of the fragmented papyrus leaves, conservation of the entire collection for safe storage and display, and publication. The completion of the project has seen major success in all three of these closely interrelated endeavors and brings to a close a long chapter of research authored by the diligent efforts of numerous scholars.

Reconstruction

The reconstruction of the papyri began, for the most part, in the very late nineteen-fifties with the work of Pahor Labib and Martin Krause. Although codex III, the first of the codices to be acquired by the Coptic Museum, had been conserved in glass frames as early as 1947, the rest remained in the hands of antiquities dealers until 1949. At that time a French scholar working in Cairo, Jean Doresse, completed a hurried inventory of the collection for Egyptian officials and packed the codices into a suitcase. The suitcase was then sealed and kept in the custody of the Department of Antiquities pending the procurement of funds for purchasing its contents. That there was already some disorder among the papyrus leaves and fragments is indicated by photographs of the codices taken prior to their storage in the suitcase, and some damage apparently occurred between this time and the time when the suitcase was again opened, briefly in 1952 and finally in 1956. Accordingly, when the German Archaeological Institute donated panes of plexiglass to the Coptic Museum in 1959, Labib, Krause and Victor Girgis conserved the papyri in the order in which they found them, thus preserving the fragments in the sequence and condition in which they had come into the possession of the museum.

8 I am personally indebted to the Smithsonian Institution and the ARCE for also providing funds for my return to the United States at the close of the project in the autumn of 1977.

9 During this period most of codex I was exported from Egypt and offered for sale in Europe and the United States. It was purchased for the C.G. Jung Institute in Zürich, Switzerland in 1952 and later presented to the eminent psychologist as a birthday present. In return for publication rights to the part of the codex that remained in Cairo, Jung's heirs have returned their possession to Egypt. The last of these leaves and fragments were registered at the Coptic Museum in October 1975. The Egyptian antiquities dealer had initially conserved this part of codex I in glass frames. These were removed when the binding and papyrus leaves were exported, necessitating a second conservation, this time in plexiglass, when the leaves were acquired for the Jung Institute. Once back in Cairo this part of codex I was reconserved in conformity with the rest of the collection.

10 See Krause (1962, 122-123).

11 Krause-Labib (1962, 21).

12 Krause-Labib (1962, 5 n. 6). With regard to the smaller fragments,
In the case of the well-preserved manuscripts this method of conservation for the most part simply retained the correct sequence of the pages. Thus the initial reconstruction of codices I, II, III, V, VI, VII and XIII posed few problems. But codices IV, VIII, IX, X, XI and XII consisted of about two thousand fragments, only a small number of which could be readily placed in correct page sequence. (See fig. 3.) Krause and Labib succeeded in reconstructing most of codex IV on the basis of other copies of the two texts it contains, though this reconstruction could not be carried through on the papyrus itself without disturbing the official inventory of the fragments. While Krause was also able to draw some conclusions about the original make-up of the other five fragmentary codices, the exact reconstruction of these remained quite problematic.

By this time, however, plans were underway for the United Nations Educational, Scientific and Cultural Organization (UNESCO) to supervise the publication of a photographic facsimile edition of the collection, a continuation of work begun by Pahor Labib. With this project in view, nearly all of the leaves and fragments were photographed between 1962 and 1966, thus permanently recording the evidence that the initial conservation had sought to preserve. In 1968 James M. Robinson was asked by the UNESCO to examine these photographs and to report on the work that would be required to prepare them for publication. The Institute for Antiquity and Christianity (Claremont, California) thereupon initiated the Coptic Gnostic Library Project, directed by Robinson, to prepare English translations of the entire collection. In the course of their work, the scholars engaged in this project also prepared hypothetical reconstructions of the very fragmentary codices and continued the difficult task of identifying the proper places of the many small fragments remaining from all the codices. But in the absence of direct access to the papyri in Cairo their work had to remain unconfirmed.

This circumstance changed in December 1970 when the UNESCO International Committee for the Nag Hammadi Codices held its first plenary meeting in Cairo. On December 16 the committee was granted permission to open the plexiglass frames and a technical sub-committee of four members (Søren Giversen, Rodolphe Kasser, however, this method was apparently not rigorously applied. Instead these were often conserved in clusters in a few plexiglass frames, from which only a very general idea of their original location can sometimes be gained. Many other small fragments were left lying in the leather bindings or in the boxes in which the bindings had been stored. These were not conserved in plexiglass until 1970.

13 What is called codex XIII did not survive into modern times as a complete codex. Rather it consists of 8 leaves that were removed from the middle of a codex and placed inside the binding of codex VI in antiquity. See Robinson (1972a).

14 Krause-Labib (1962, 40).
15 See Krause (1962, 127-129).
16 Labib (1956).
17 This photographic record has proved the value of Labib and Krause's conservation procedure by providing significant clues to the original order of many of the fragments.
Krause and Robinson) was charged with responsibility for carrying out the physical reconstruction of the papyri and guiding further photography for the facsimile edition. In the course of five brief sessions between 1970 and 1973 the technical sub-committee, assisted by members of the Coptic Gnostic Library Project, tested and improved various hypothetical reconstructions that had been proposed, rearranged those fragments accordingly, and continued to identify and place further fragments.

The Nag Hammadi Codices Editing Project continued this work intensively from July 1974 through August 1975. Under the direction of James M. Robinson, Principal American Investigator for the project, Charles W. Hedrick and I de-

Fig. 3 (at left). This photograph, taken in the mid-sixties, shows 22 papyrus fragments conserved with Nag Hammadi codex VIII. Ten of these fragments have been placed in that codex, one in codex IV, and one in codex XI. Three of the remaining fragments, though as yet unplaced, have been assigned to other codices because the handwriting on them is clearly not the same as that in codex VIII.

Fig. 4 (at right). Charles W. Hedrick at work on reconstructing the papyrus rolls from which Nag Hammadi codex IV was manufactured. This procedure can sometimes provide the decisive criteria for establishing the original sequence of pages in a papyrus codex. It must be used in any case in order to confirm a sequence established by other means.
Krause and Robinson) was charged with responsibility for carrying out the physical reconstruction of the papyri and guiding further photography for the facsimile edition. In the course of five brief sessions between 1970 and 1973 the technical sub-committee, assisted by members of the Coptic Gnostic Library Project, tested and improved various hypothetical reconstructions that had been proposed, rearranged those fragments accordingly, and continued to identify and place further fragments.

The Nag Hammadi Codices Editing Project continued this work intensively from July 1974 through August 1975. Under the direction of James M. Robinson, Principal American Investigator for the project, Charles W. Hedrick and I de-

Fig. 3 (at left). This photograph, taken in the mid-sixties, shows 22 papyrus fragments conserved with Nag Hammadi codex VIII. Ten of these fragments have been placed in that codex, one in codex IV, and one in codex XI. Three of the remaining fragments, though as yet unplaced, have been assigned to other codices because the handwriting on them is clearly not the same as that in codex VIII.

Fig. 4 (at right). Charles W. Hedrick at work on reconstructing the papyrus rolls from which Nag Hammadi codex IV was manufactured. This procedure can sometimes provide the decisive criteria for establishing the original sequence of pages in a papyrus codex. It must be used in any case in order to confirm a sequence established by other means.
voted most of our time to the work of reconstruction, while throughout the grant periods many other scholars came from both the United States and Europe to work on the manuscripts according to their interests and as their schedules permitted. By the end of 1974 hundreds of fragments, some no larger than a fingernail, had been placed through the use of advanced papyrological techniques that rely primarily on the unique patterns of the papyrus fibers rather than on the much less certain criteria offered by the text. A detailed investigation of how the codices were originally manufactured has provided criteria for establishing the sequence of pages in a papyrus codex with a high degree of certainty and without heavy reliance on scribal pagination, which in many cases is not extant, or textual continuity, which can hardly be hoped for in the more fragmentary codices. (See fig. 4.) At present the page sequence and original length of each codex is clear with but three exceptions:

(1) The extremely fragmentary condition of codex X, further complicated by a lack of pagination after page 5, has made it impossible to determine the original length of the codex. Fragments of 54 inscribed pages survive, but the codicological relationship of these fragments indicates that originally there must have been at least 68 inscribed pages and quite probably there were more. The sequence of the fragments now identified as pages 13-22 and 55-58 also remains somewhat hypothetical.

(2) Codex XII represents the largest loss within the collection. At present it consists of only 8 leaves and several smaller fragments. Although the leaves lack page numbers they can be put into relative sequence through comparison with other copies of the two known texts in the codex and, to some extent, also on the basis of papyrus fiber continuity. This reconstruction indicates that the codex originally contained at least 71 inscribed pages.

18 The visiting members of the project were G.M. Browne, Anton Fackelmann, Bentley Layton, Dieter Muellert, Birger Pearson, William C. Robinson Jr., John Sieber, Frederik Wisse, and Jan Zandee. Other scholars who visited the project during the grant periods were Søren Giversen (Denmark), Rodolphe Kasser (Switzerland), Klaus Koschorke (Federal Republic of Germany), Martin Krause (Federal Republic of Germany), Jean-Pierre Mahé (France), Manfredo Manfredi (Italy), Jacques-É. Ménard (France), Peter Nagel (German Democratic Republic), Tito Orlandi (Italy), Torgny Säve-Söderbergh (Sweden), and Hans-Martin Schenke (German Democratic Republic).

19 See Hedrick (1976) and the literature cited there (p. 148 n. 4).

20 See Wisse (1975) and James M. Robinson (1975a), (1975b) and "The Future of Papyrus Codicology," forthcoming in the first volume, on The Future of Coptology, ed. R.Mcl. Wilson, of a new series of Coptic Studies from Brill (Leiden). Turner (1977) has recently undertaken the important and demanding task of laying the foundations for a codicological typology.

21 A detailed discussion of the considerations that led to the present reconstruction can be found in The Facsimile Edition of the Nag Hammadi Codices: Codices IX and X (Leiden: Brill, 1977) xix-xxiii.

22 The fact that codex XII, in distinction to the rest of the Nag Hammadi codices, has facing pages with the same papyrus fiber direction makes it impos-
Since the few extant leaves are themselves relatively well-preserved, witnessing to a state of preservation that is inconsistent with so great an overall loss, it is likely that this loss, which presumably includes a leather binding, took place only after the discovery in 1945. It is thus to be hoped that the binding and the remainder of the leaves may yet come into scholarly hands, though there is now good reason to believe that at least some of this lost portion of the codex was burnt shortly after the discovery.  

(3) As has been noted, codex XIII did not survive into modern times as a complete codex. It is virtually certain that the 8 extant leaves originally lay at the very center of a quire, thus clarifying their relative sequence even though page numbers can only be assigned to them hypothetically. Since the last extant leaf ends with the opening lines of a text preserved completely in codex II, a minimal length for the codex can be estimated at 80 pages. Nevertheless, the 16 surviving pages are presumably all that were interred with codex VI in antiquity.

Appendix III gives the present inventory of pages and fragments of the Nag Hammadi codices. About 93% of the 1240 inscribed pages that originally made up the collection are represented by at least a fragment. (If one discounts the major loss in codex XII alone this figure rises to 97%.) Of the 714 inscribed fragments that remain unplaced less than a hundred preserve any more than a few letters of inscription. There is little doubt that many of the remaining fragments can still be placed, but now the time and effort required would probably be disproportionately great compared to the amount of information so gained.

Conservation

Concurrently with the reconstruction of the manuscripts the Editing Project undertook to conserve the collection for the Coptic Museum. Peggy S. Hedrick and Anita W. Robinson, conservators for the project, faced a major problem from the outset. The antiquities dealers from whom the papyri were obtained had used transparent cellulose adhesive tape, generously and none too judiciously, to hold some of the fragments together, often incorrectly. In the

23 The story reported by Doresse that after the discovery of the codices "the peasants had burnt some of them to brew their tea" (Doresse [1960, 118]) has been confirmed and clarified by an eye-witness interviewed in the Nag Hammadi region by James M. Robinson.

24 See note 13 above.

25 For advice on the work of conservation we are especially indebted to Messrs. Baines-Cope (London), Stanley Baker (London), John Barns† (Oxford), Walter Cockle (London), and Anton Fackelmann (Vienna), who also joined the project in Cairo briefly in 1974.
Fig. 5. Anita W. Robinson carefully removing the old cellulose adhesive tape used by antiquities dealers to hold fragments of papyrus together. Once this delicate and difficult task was accomplished the fragments were rejoined with tiny pieces of paper tape (cf. fig. 8).

Fig. 6-7. NHC I 81 before and after removal of old cellulose adhesive tape. Note that the removal of the uppermost strip of tape permitted the addition of a fragment at 81,5-7.
Fig. 5. Anita W. Robinson carefully removing the old cellulose adhesive tape used by antiquities dealers to hold fragments of papyrus together. Once this delicate and difficult task was accomplished the fragments were rejoined with tiny pieces of paper tape (cf. fig. 8).

Fig. 6-7. NHC I 81 before and after removal of old cellulose adhesive tape. Note that the removal of the uppermost strip of tape permitted the addition of a fragment at 81,5-7.
course of more than twenty years this tape discolored and began to stain the papyrus, obscuring portions of the text. In a few cases the adhesive had also begun to ooze out from beneath the cellulose backing, sticking the papyrus to the insides of the plexiglass. In order to open these the conservators had to brush acetone on the outsides of the plexiglass, which is slightly porous, so that the fumes would penetrate and dissolve the adhesive on the insides.

To remove the adhesive tape itself two other chemicals were used, first trichlorethylene as a solvent and then xylene to neutralize the remaining adhesive substance. When necessary, industrial methylated spirits was used to wash out the other chemicals. The eminently satisfactory outcome of this troublesome task has left the papyri almost entirely free of unnatural vitiating forces and has improved their aesthetic appearance. (See fig. 5-7.) In addition, the removal of the tape not only enabled us to realign many fragments properly but also drew our attention to a number of small fragments that had been pulled out of their correct positions by tape on a facing page, thus permitting us to put them back where they belong.

To hold fragments together in their proper relationships we used the brown paper packing tape with a water-soluble glue that has been in use at the British Museum since the early years of papyrology. This tape, cut very small (on the order of millimeters) and applied under magnification with a fine brush, can be practically invisible against the papyrus. If necessary it can be removed easily with a bit of water. (See fig. 8.) When two fragments do not physically connect, this tape can be used to bridge the gap or to make a firm island to which the fragments can be attached. Thus the fragments of even the most deteriorated leaf can be secured in their proper relative positions without recourse to attaching them permanently to any kind of backing. (See fig. 9.)

For the final conservation we preferred to place the papyri between panes of glass. The plexiglass in which they were conserved in the early sixties had become very scratched with long use and were not of a uniform size. Furthermore, during the first conservation each papyrus sheet, which forms two leaves (four pages) of a codex when folded at the middle, had been cut in half at the spine, if they were not already broken there, and the leaves were conserved individually. We decided to reunite such conjugate leaves and to conserve the co-

---

26 In a few places tape was cleaned around the edges but left in place because the papyrus it covers is too fragile to permit successful removal. Tape had to remain in a few other places as well because the adhesive involved did not react effectively to the chemicals. Although there is some disagreement among conservators as to the best chemicals to use in this kind of work (and it may depend on the kind of adhesive to be dissolved) none of those used by us are considered harmful to papyrus.

27 Although it was inevitable that removing the tape at times also meant removing some surface papyrus and ink, this consideration was outweighed by the more deleterious effects of leaving the tape in place. Passages that were damaged in the process of removing the tape are included in my collation of exclusively photographic evidence for the texts, which has begun to appear with Emmel (1977b).
Fig. 8. Two fragments of inscribed papyrus are joined at NHC VI 10,3 by two minute pieces of paper tape. The actual size of the area shown is only one cm. square. Note the clear continuity of the papyrus fibers across the break.

Fig. 9. NHC XI 12 has been reconstructed from three large, two small, and one very small fragments on the basis of vertical (on the recto, p. 11) and horizontal papyrus fiber continuity as well as on the basis of the contours of deterioration of preceding and succeeding leaves. The stiff paper islands serve to hold the fragments in their correct relative positions without necessitating their attachment to any sort of backing.

dices sheet by sheet. Since all of the Nag Hammadi codices except codex I consist of a single quire this method of conservation preserves the aspect of the codex and is therefore of considerable advantage to further work on placing fragments and to codicological study.28

The Egyptian Antiquities Organization approved our proposed conservation format but requested that plexiglass be used instead of glass. Accordingly, we imported a sufficient quantity of plexiglass panes (37x32 cm. and 3 mm. thick) from Switzerland, Great Britain and the United States and transferred the reconstructed papyrus leaves to them.29 Each sheet is positioned

28 Since codex I is more like three single-quire codices bound into a single cover than it is like the usual multi-quired codices, conserving it in the same format as the rest of the collection is not overly disruptive of its original structure.

29 Very special thanks must be given to Carol Crochet who volunteered her careful and conscientious assistance in this work in January and June-
Fig. 8. Two fragments of inscribed papyrus are joined at NHC VI 103 by two minute pieces of paper tape. The actual size of the area shown is only one cm. square. Note the clear continuity of the papyrus fibers across the break.

Fig. 9. NHC XI 12 has been reconstructed from three large, two small, and one very small fragments on the basis of vertical (on the recto, p. 11) and horizontal papyrus fiber continuity as well as on the basis of the contours of deterioration of preceding and succeeding leaves. The stiff paper islands serve to hold the fragments in their correct relative positions without necessitating their attachment to any sort of backing.

dices sheet by sheet. Since all of the Nag Hammadi codices except codex I consist of a single quire this method of conservation preserves the aspect of the codex and is therefore of considerable advantage to further work on placing fragments and to codicological study.28

The Egyptian Antiquities Organization approved our proposed conservation format but requested that plexiglass be used instead of glass. Accordingly, we imported a sufficient quantity of plexiglass panes (37x32 cm. and 3 mm. thick) from Switzerland, Great Britain and the United States and transferred the reconstructed papyrus leaves to them.29 Each sheet is positioned

28 Since codex I is more like three single-quire codices bound into a single cover than it is like the usual multi-quired codices, conserving it in the same format as the rest of the collection is not overly disruptive of its original structure.

29 Very special thanks must be given to Carol Crochet who volunteered her careful and conscientious assistance in this work in January and June—
such that when the frames containing a codex are stacked neatly on top of each other the relative alignment of the sheets recreates the quire as if it were opened at the center. Since the brown tape used on the papyrus does not adhere to plexiglass the sheets are attached to one pane of each frame with a minimal number of small pieces of *filmoplast P*, a translucent adhesive paper developed specifically for repairing old books, particularly of paper and parchment. The edges of the plexiglass frames are also sealed with this tape and each frame is labelled with the relevant codex, page and Coptic Museum inventory numbers.

The leather bindings in which the codices were encased are similarly conserved in shallow plexiglass boxes. The unplaced fragments are conserved with the codices to which they have been assigned. The scraps of Greek and Coptic papyri (cartonnage) removed from the leather bindings of codices IV, V, VI, VII, VIII, IX and XI are conserved and stored as a unit, together with the miscellaneous fragments, rather than with the codices from which they were removed. The binding of codex I, with its cartonnage, is kept at the Institute for Antiquity and Christianity, which purchased it, with the approval of the Egyptian Antiquities Organization, from a European owner. The whereabouts of whatever cartonnage may have been removed from the bindings of codices II, III and X is not known.

At the end of 1974 we designed two storage cabinets for the papyri. The cabinets were constructed by Design Center Cairo (14 Adli Street, Cairo). Each cabinet contains two cupboards, each designed to hold three portable wooden August 1975 and again in January 1976. We were also assisted briefly by Katrinka Sieber, Jun Foresman, Anne Jackson, Ted Worth, Connie Mallard, R. Scott Birdsall, Michael Bryan Fiske, James Goehring, and Marvin W. Meyer. With regard to one of the major objections to the use of plexiglass for the conservation of papyrus it should be noted that a static charge can be removed easily with readily available anti-static fluids. The question of possible chemical interaction between plexiglass and papyrus cannot be answered decisively; perhaps only time will tell. Suffice it to report that the Nag Hammadi papyri have been in plexiglass frames for nearly two decades now without noticeable alteration on that account.

30 In the case of codex XIII, on which see note 13 above, the leaves are aligned such that the contours of deterioration of leaf 49/50 match those of codex VI leaf 1/2.

31 This material, manufactured by Hans Neschen (D-4967 Bückeburg, POB 1340, Federal Republic of Germany), is advertised as "absolutely neutral: non acidic, non conductive, no wood-aliment, free of plasticizer, non yellowing, no discoloring." See Burlage (1966) and, for a scientific test report on longevity made in the Danish Nuclear Center with documents from the Copenhagen State Archive, Skall (1974), who reports that the adhesive used for *filmoplast P* is a polyacrylate (p. 38). *Filmoplast P* fared well in these tests. However, *filmoplast P* is too thin to provide much structural support unless it is used in large pieces. Since it is most desireable not to cover inscription with any adhesive material, we used *filmoplast P* to mend the papyrus only when there was no alternative to placing the tape over a bit of ink. In these few cases we still used the smallest pieces possible.
boxes. Inside each box are two rows of seven shelves on which the plexiglass frames are stored, three per shelf. Each frame is kept in a strong plastic bag for protection against scratching. The contents of each box correspond to one volume of the ARE-UNESCO facsimile edition and the shelves are labelled in detail to facilitate access to any particular page. Mounted on each storage cabinet is a glass-topped display area. At present the cabinets are kept in the manuscript wing of the Coptic Museum library in the care of Mrs. Samiha Abd El-Shaheed, the Curator of Manuscripts. (See fig. 10.)

Publication and beyond

The main work of the Nag Hammadi Codices Editing Project is being published in two series of volumes. The first volume of *The Facsimile Edition of the Nag Hammadi Codices*\(^3\) appeared in 1972. The twelfth and final volume will be printed in 1979. This complete photographic edition of the collection documents the reconstruction of the manuscripts as of the beginning of 1978.\(^3\) The rapidity with which these volumes have continued to appear since 1974 is due in large part to the support of the Smithsonian Institution and the American Research Center in Egypt. The Editing Project has also provided members of the Coptic Gnostic Library Project with repeated opportunities to check their editions against the manuscripts themselves. The unchallenged value of autoptic examination of ancient texts has been enhanced in the case of the Nag Hammadi codices by the discovery that deteriorated passages often become quite legible when viewed under ultraviolet light. The first volume of the Coptic Gnostic Library Project's critical editions and English translations appeared in 1975,\(^4\) a second volume is presently in the press, and it is expected that the remaining volumes will appear soon now that the reconstruction of the manuscripts has been completed.

The project has also given birth to two important offspring. First, several forays by members of the project to the reputed site of the discovery of the manuscripts near Nag Hammadi has led to three seasons of archeological survey and excavation in the area under the auspices of the Institute for Antiquity and Christianity.\(^5\) Second, the continued presence in Egypt of members of the Editing Project made possible the highly successful International Congress of Coptology, sponsored jointly by the UNESCO and the Egyptian Antiquities Organization in Cairo, December 9-17, 1976, which led in turn to the founding

\(^3\) Published under the auspices of the Department of Antiquities of the Arab Republic of Egypt in conjunction with the United Nations Educational, Scientific and Cultural Organization (Leiden: Brill, 1972 and following).

\(^4\) Users of *The Facsimile Edition* should not overlook the additions and corrections that will appear in the introductory volume in 1979.


\(^3\) See note 2 above and Van Elderen-Robinson (1977).
Fig. 10. Mrs. Samiha Abd El-Shaheed, Curator of Manuscripts for the Coptic Museum, with the Nag Hammadi codices in the manuscript wing of the library.

Of course none of it would have been possible without the generous cooperation of our Egyptian hosts. For their hospitality and assistance of every sort we are especially indebted to Dr. Gamal Mokhtar, President Emeritus of the Egyptian Antiquities Organization, Dr. Pahor Labib, Director Emeritus of the Coptic Museum, Dr. Victor Girgis, Director General of Egyptian Museums, Dr. Mounir Basta, Director of the Coptic Museum, and Mrs. Samiha Abd El-Shaheed and the other members of the staff at the Coptic Museum.

Fig. 10. Mrs. Samiha Abd El-Shaheed, Curator of Manuscripts for the Coptic Museum, with the Nag Hammadi codices in the manuscript wing of the library.

Of course none of it would have been possible without the generous cooperation of our Egyptian hosts. For their hospitality and assistance of every sort we are especially indebted to Dr. Gamal Mokhtar, President Emeritus of the Egyptian Antiquities Organization, Dr. Pahor Labib, Director Emeritus of the Coptic Museum, Dr. Victor Girgis, Director General of Egyptian Museums, Dr. Mounir Basta, Director of the Coptic Museum, and Mrs. Samiha Abd El-Shaheed and the other members of the staff at the Coptic Museum.

### APPENDIX I

Table of Texts in the Nag Hammadi Codices

<table>
<thead>
<tr>
<th>codex</th>
<th>text</th>
<th>page and line numbers</th>
<th>title¹</th>
<th>other versions²</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1:</td>
<td>A,36 up-B,1 up</td>
<td>Prayer of the Apostle Paul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>1,1-16,30</td>
<td>The Apocryphon of James</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td>16,31-43,24</td>
<td>The Gospel of Truth</td>
<td>NHC XII 2</td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td>43,25-50,18</td>
<td>The Treatise on the Resurrection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td>51,1-138,18</td>
<td>The Tripartite Tractate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Titles in italic type are preserved as such in the manuscripts. Titles in regular type are modern designations. These have been drawn either from the content of the text (NHC I 2, I 5, II 5, VI 6, IX 2, IX 3, XI 2) or from the opening words of the text (NHC I 3) or from the title given to another version of the text (NHC IV 2, V 1, VI 5, VI 7, VI 8, XII 1, XII 2, XIII 2).

² Abbreviations:


BM = British Museum (now the British Library); for Or. 4926(1) see Christian Oeyen, "Fragmente einer subachaimischen Version der gnostischen 'Schrift ohne Titel'" in Krause, ed. (1975, 125-144); for Or. 6003 see Wolf-Peter Funk, "Ein doppelt überliefertes Stück spätägyptischer Weisheit" in *Zeitschrift für die ägyptische Sprache* 103 (1976) 8-21; Coptic and Arabic (and a late Latin version of the latter).

BP = Berlin Papyrus; for 8502 see Walter C. Till, *Die gnostischen Schriften des koptischen Papyrus Berolinensis 8502* (Texte und Untersuchungen 60), 2nd ed. revised by Hans-Martin Schenke (Berlin: Akademie Verlag, 1972); Coptic.


NHC = Nag Hammadi codex.

P.Oxy. = Oxyrhynchus Papyrus; for 1, 654 and 655 see Joseph A. Fitzmyer, "The Oxyrhynchus Logoi of Jesus and the Coptic Gospel According to Thomas" in his *Essays on the Semitic Background of the New Testament* (Sources for
| II 1: 1,1-32,9 | The Secret Book According to John | NHC III 1 |
| 2: 32,10-51,28 | The Gospel According to Thomas | P.Oxy. 654 |
| 3: 51,29-86,19 | The Gospel According to Philip | P.Oxy. 655 |
| 4: 86,20-97,23 | The Reality of the Rulers | P.Oxy. 1 |
| 5: 97,24-127,17 | On the Origin of the World | NHC XIII 2 |
| 6: 127,18-137,27 | The Expository Treatise Concerning the Soul | BM Or. 4926(1) |
| 7: 138,1-145,23 | The Book of Thomas (the contender writing to the perfect ones) | |
| III 1: 1,1-40,11 | The Secret Book of John | NHC II 1 |
| 2: 40,12-69,20 | The Holy Book of the Great Invisible Spirit (less properly called The Gospel of the Egyptians) | NHC IV 2 |
| 3: 70,1-90,13 | Eugnostos the Blessed | NHC V 1 |
| 4: 90,14-119,18 | The Wisdom of Jesus | BP 8502 3 |
| 5: 120,1-147,1 up | The Dialogue of the Savior | P.Oxy. 1081 |
| IV 1: 1,1-49,28 | The Secret Book According to John | NHC II 1 |
| 2: 50,1-81,2 | The Gospel of the Egyptians | NHC III 2 |
| V 1: 1,1-17,extant 18 | Eugnostos the Blessed | NHC III 3 |
| 2: 17,extant 19-24,9 | The Revelation of Paul | |
| 3: 24,10-44,extant 7 | The (first) Revelation of James | |
| 4: 44,extant 8-63,32 | The (second) Revelation of James | |
| 5: 64,1-85,32 | The Revelation of Adam | |
| VI 1: 1,1-12,22 | The Acts of Peter and the Twelve Apostles | |

Krause-Labib (1962, 26) suggested that this text was originally headed by a title but that this had been erased and replaced by the scribal note at 65,8-14. No such erasure is detectable, however, even under ultraviolet light.
APPENDIX II

The Scribes Who Copied the Nag Hammadi Codices

None of the Nag Hammadi codices appear to contain the first Coptic copy of a text. On the contrary, the evidence suggests that what we have is a compilation of later copies. As many as fourteen different scribes may have been employed in making these copies. They are listed here in the order of their appearance with the Coptic dialect in which they worked given in parentheses.

1. I 1-3 (Subachmimic), 5 (crypto-Sahidic?)
2. I 4, XI 1-2 (Subachmimic)
3. II 1, 2 (except 47, 1-8), 3-7 (Sahidic)
4. II 2, 47, 1-8 (Sahidic)
5. III 1-5 (Sahidic)²
6. IV 1-2 (Sahidic)
7. V 1-5 (Sahidic)
8. VI 1-6 (Sahidic)
9. VII 1-5, XI 3-4 (Sahidic)
10. VIII 1-2 (Sahidic)
11. IX 1-3 (Sahidic)
12. X 1 (Subachmimic)
13. XII 1-2 (Sahidic)
14. XIII 1-2 (Sahidic)

Note that several of the fourteen scribes can be judged more or less certainly to have been closely related in time and space in that their work overlaps in several codices: scribes 1, 2 and 9; scribes 3 and 4. But fourteen scribes may well be too conservative a figure; there may have been as few as eight. Scribe 3 is probably to be identified with scribe 14. In codex XIII he used a quicker, more cursive hand. (Compare also the still more cursive super-

¹ For a summary statement concerning our present knowledge of the (seven) major Coptic dialects see Layton (1976b, esp. § 2 a.i.). By and large the "Sahidic" texts from Nag Hammadi appear to have been translated by native speakers of a dialect other than Sahidic. Most display features of "crypto-Subachmimic" (the term has been introduced by Layton [1977, 66]), while a few display interesting isoglosses with Bohairic and Fayyumic. (See further Nagel [1969b, esp. pp. 467-469], [1972], and Layton [1974, 374-383].)

² Scribe 5 has left two fingerprints for posterity, one at NHC III 68, 11-12 and the other at 120, 23-24. Both are only clearly visible under ultraviolet light.
linear insertion in codex II at 12,18.)\(^3\) The hand of scribe 4 is remarkably similar to that of scribe 13, but the surviving work of the former is too little (only eight lines of text) to permit a certain identification. Scribes 6, 7, 8, 10 and 11 all have similar hands and have often been identified as a single scribe.\(^4\) However, the similarities may be due rather to the influence of a single scribal school. According to the report of Robinson (1975b, 18), Manfredo Manfredi of the G. Vitelli Papyrological Institute (Florence, Italy) judged only scribes 8, 10 and to a lesser extent 6 to be really similar in this group, scribes 7 and 11 being clearly distinct.\(^5\)

For further considerations bearing on the unity of the Nag Hammadi codices in antiquity see Robinson (1975b, 16-19), (1977b, 14-15).

---

3 This identification was first made by Krause-Labib (1962, 297 addition to p. 13). Although Krause later retracted the identification (Krause [1963, 111 n. 2]), it has recently won strong endorsement from Layton (1976a, 84). I concur in this latter judgement and should add that a comparison of the use and shapes of the articulation mark in codex II (on which see Layton [1973, 190-199], noting, however, that his remarks refer only to the fourth tractate in codex II) and codex XIII further confirms the identification. Among the Nag Hammadi codices, II and XIII are unique in this respect. (See further the brief comments of Frederik Wisse in The Journal of the American Oriental Society 92 [1972] 189, who bases them on an examination of all of codex II as well as the remainder of the codices.) Janssens (1974, 341-342) uses this identification as a basis for some interesting speculation concerning the original contents of codex XIII. It should be pointed out, however, that her contention that codex II and codex XIII are also similar in that they, in distinction to the rest of the codices, do not contain numbered pages is unfounded. While the pages of codex II were certainly left by the scribe without numbers, the top margins of the pages remaining from codex XIII are too deteriorated for us to determine whether they ever held page numbers or not.

4 This identification was first made by Doresse (1961, 30 and 34-39) and was accepted by Krause (1963, 110-111).

5 The further identification of scribe 1 with scribe 12 (Doresse [1961, 31 and 45-46], followed by Krause [1963, 111]) is not generally accepted.
APPENDIX III

Inventory of Pages and Fragments of the Nag Hammadi Codices

<table>
<thead>
<tr>
<th>codex</th>
<th>Coptic Museum inventory number</th>
<th>original number of inscribed pages</th>
<th>extant identified inscribed pages</th>
<th>unplaced inscribed fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10554, 10589, 10590, 11597, 11640</td>
<td>140</td>
<td>140</td>
<td>68</td>
</tr>
<tr>
<td>II</td>
<td>10544</td>
<td>145</td>
<td>145</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>4851</td>
<td>147</td>
<td>135</td>
<td>8</td>
</tr>
<tr>
<td>IV</td>
<td>10552</td>
<td>81</td>
<td>81</td>
<td>110</td>
</tr>
<tr>
<td>V</td>
<td>10548</td>
<td>84</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>VI</td>
<td>10549</td>
<td>78</td>
<td>78</td>
<td>17</td>
</tr>
<tr>
<td>VII</td>
<td>10546</td>
<td>127</td>
<td>127</td>
<td>-</td>
</tr>
<tr>
<td>VIII</td>
<td>10550</td>
<td>136</td>
<td>132</td>
<td>119</td>
</tr>
<tr>
<td>IX</td>
<td>10553</td>
<td>75</td>
<td>72</td>
<td>86</td>
</tr>
<tr>
<td>X</td>
<td>10551</td>
<td>68</td>
<td>54</td>
<td>103</td>
</tr>
<tr>
<td>XI</td>
<td>10547</td>
<td>72</td>
<td>72</td>
<td>38</td>
</tr>
<tr>
<td>XII</td>
<td>10555</td>
<td>71</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>XIII</td>
<td>10545</td>
<td>16</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>miscellaneous fragments</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>totals</td>
<td>1240</td>
<td>1156</td>
<td>714</td>
<td></td>
</tr>
</tbody>
</table>

1 When these figures involve estimation they are minimal and conservative. Only that part of codex XIII buried with codex VI in antiquity is counted.

2 Since unplaced fragments 1 and 2 of codex XII do not belong to any of the identified pages of that codex they are counted here as identified, even though their exact position in the codex cannot be determined. In some cases a leaf is represented by a single small fragment. The amount of missing text is thus greater than the number of entirely missing leaves can indicate.

3 These are fragments that were not at first conserved with a particular codex and which cannot readily be assigned to one on the basis of the scribal hands.
REFERENCES

Altheim, F. and R. Stiehl  
eds. 1969 *Die Araber in der alten Welt V.ii (Das christliche Aksum).* Berlin: de Gruyter.

Barns, John W.B.  

Burlage, Johann  

Dart, John  

Doresse, Jean  

Emmel, Stephen  

Guillaumont, Antoine  
1958 "Semitismes dans les logia de Jésus retrouvés à Nag Hamâdi." *Journal asiatique* 246, 113-123.

Hedrick, Charles W.  

Janssens, Yvonne  
1974 "Le codex XIII de Nag Hammadi." *Le Muséeon* 87, 341-413.

Jonas, Hans  

Krause, Martin  

Krause, Martin and Pahor Labib  

Labib, Pahor  

Layton, Bentley  

Ménard, Jacques-É.  

Nagel, Peter  
1969b "Grammatische Untersuchungen zu Nag Hammadi Codex II." In Altheim-Stiehl, eds. (1969, 393-469).  

Roberts, C.H.  

Robinson, James M.  


Säve-Söderbergh, Torgny

1975 "Holy Scriptures or Apologetic Documentations? The 'Sitz im Leben' of the Nag Hammadi Library." In Ménard, ed. (1975, 3-14).

Scholer, David

Skall, Egil

Skeat, T.C.

Turner, E.G.

Van Elderen, Bastiaan and James M. Robinson

Wisse, Frederik


**PHOTOGRAPHIC CREDITS**

Fig. 1: James M. Robinson. Fig. 2: Jean Doresse. Fig. 3: Center of Documentation in Cairo. Fig. 4: Peggy S. Hedrick. Fig. 5: Stephen Emmel. Fig. 6: Basile Psiroukis. Fig. 7: Basile Psiroukis. Fig. 8: Stephen Emmel. Fig. 9: Basile Psiroukis. Fig. 10: Douglas Kuylenstierna.