The American University in Cairo
School of Sciences and Engineering

Strengthening of Lightweight Autoclaved Aerated Concrete Masonry Wall Using Ferrocement

BY

Ahmed Mohammed Hendam

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Construction Engineering

Under the Supervision of:

Dr. Mohamed Abdel Mooty
Professor, Department of Construction and Architecture Engineering
The American University in Cairo

Dr. Ezzat H. Fahmy
Professor, Department of Construction and Architecture Engineering
The American University in Cairo

Fall 2013
Acknowledgement

In the name of Allah, The Most Gracious and The Most Merciful

First and foremost I would like to thank gracious GOD for His continuous support, guidance and giving me the knowledge and ability to accomplish this work.

I would also like to take this opportunity to thank all those who made the completion of this thesis possible.

I express my deepest gratitude to my supervisor, Dr. Mohamed Abdel Mooty, for his continuous enthusiasm, inspiration, and efforts to explain things clearly and simply. I have been able to acquire a lot of skills and experience during the years of working with him. This thesis would not have been done without his great help and advice. I would like also to extend my gratitude to Dr. Ezzat Fahmy and Dr. Naguib Abou Zeid for always giving me the confidence to conquer and advance. In addition, I would like to thank Eng. Ezat Sallam for his greet help in finishing the finite element analysis of this thesis using ANSYS software program.

I would like to extend my gratitude to all the engineers, technicians and workers in the Materials and Structures Laboratories of the American University in Cairo (AUC). I wish to express my warm and sincere thanks to my colleagues; Eng. Yomna Ali, Eng. Yosra El Maghraby, Eng. Sherif Shaaban, Eng. Waleed Alkady and Eng. Mohamed Saleh. In addition, I would like acknowledge that this thesis was supported by award No. UK-C0015 made by King Abdullah University of Science and Technology (KAUST)

Last but not least, I want to thank my parents and I devote this thesis to them. Because of their spiritual support, I have been able to accomplish my masters program at AUC.
ABSTRACT

Ferrocement sandwich wall system with core of AAC blocks has been developed to act as a wall bearing structural system instead of conventional reinforced concrete elements. The proposed structural wall bearing element is suitable for building in the harsh climates such as the desert environment. The proposed system should provide the desired properties such as thermal insulation, crack resistance, and environment friendly as well as the ease of construction. Different tests were conducted to assess the physical, and mechanical strength, and thermal conductivity for the proposed structural system and to highlights its advantages and limitations of it. Experimental, theoretical, and analytical model investigations were conducted to examine the effectiveness of using this application of ferrocement.

The experimental program is designed to investigate the effect of selected parameters on the behaviour of ferrocement reinforced AAC masonry wall. The selected parameters included: thickness of the AAC bricks, type and presence or absence of shear connectors, and the type of the mortar. The experimental program is divided into three types of testing in this research. The first and the second tests aimed at determining the mechanical properties of the ferrocement walls, namely axial compression loading testing, flexural loading testing. The third testing is in-plane lateral loading testing conducted to simulate seismic and wind load effect on structural walls. This thesis included thirty eight specimens which were examined using different kinds of tests. A total of twenty three specimens were tested under axial compression loading, and five specimens were tested under bending as simply supported flexural elements, while ten full scale wall specimens were tested under lateral in-plane loading.

Theoretical models were developed to simulate axial compression, and flexural loading model. A comparison between the theoretical and the experimental results was conducted and showed reasonable agreement, which served as verification for the developed models.

A finite element model was developed and verified against the experimental work to represent the masonry wall and the ferrocement overlay. A commercial general purpose
finite element programme named ANSYS was used to develop the models of the test specimens due to its ability to deal with causes of nonlinearity including material and geometrical nonlinearities. The results of the finite element model correlate well with the experimental results which served as verification for the analytical model. Thus, the analytical model could be used in the future to investigate additional parameters.

The experimental, theoretical, and analytical results showed that the proposed ferrocement sandwich wall system is applicable as wall bearing structural element. Yet, further work needs to be done in order to deeply investigate other relevant properties of this innovative system.
Table of Contents

List of Figures ... viii

List of Tables .. xiv

Chapter 1: Introduction .. 1

1.1 Introduction .. 1

1.2 Ferrocement Sandwich Panels ... 2

1.3 Scope and Objectives of the work ... 3

1.4 Thesis Organization .. 4

Chapter 2: Literature Review .. 6

2.1 Introduction .. 6

2.2 Autoclaved Aerated Concrete (AAC) ... 7

2.2.1 Materials Used in AAC ... 7

2.2.2 Mechanical Properties of AAC .. 7

2.3 Ferrocement .. 10

2.3.1 Ferrocement Constituent Material .. 10

2.3.2 Structural Applications of Ferrocement .. 14

Chapter 3: Experimental Program ... 19

3.1 Introduction .. 19

3.2 Test Specimens ... 19

3.3 Materials ... 21

3.3.1 Mortar .. 21

3.3.2 Welded Steel Wire Mesh Reinforcement .. 24
5.4 Theoretical Calculation of the Ultimate Load .. 126

Chapter 6: Lateral Loading: Experimental Results and Discussion 130

6.1 Introduction .. 130

6.2 Behaviour Under Lateral Loading .. 130

6.2.1 Failure Modes for specimen L1 ... 132

6.2.2 Failure Modes for specimen L3 ... 138

6.2.3 Failure Modes for specimen L5 ... 146

6.2.4 Failure Modes for specimen L2 ... 153

6.2.5 Failure Modes for specimen L4 ... 159

6.2.6 Failure Modes for specimen L6 ... 166

6.2.7 Failure Modes for specimen L7 ... 173

6.2.8 Failure Modes for specimen L8 ... 180

6.2.9 Failure Modes for specimen L9 ... 187

6.2.10 Failure Modes for specimen L10 ... 195

6.3 Parametric Study ... 203

6.3.1 Effect of the Wall Thickness ... 203

6.3.2 Effect of the Ferrocement Layer .. 204

6.3.3 Effect of the Wall Opening ... 206

Chapter 7: Finite Elements Model and Results .. 208

7.1 Introduction .. 208

7.2 The Proposed Model ... 208

7.2.1 Control Masonry Wall .. 212

7.2.2 Ferrocement Masonry Wall .. 213

7.3 Finite Elements Results ... 214
7.3.1 Control Masonry Wall ... 215
7.3.2 Ferrocement Masonry Wall ... 218
7.4 Parametric Study .. 222
 7.4.1 Effect of the Mortar Matrix Strength ... 222
 7.4.2 Effect of the Ferrocement Layer Thickness 223
 7.4.3 Effect of Increasing Layers of the Reinforcing Steel Mesh 225
Chapter 8: Summary and Conclusions ... 227
 8.1 Summary .. 227
 8.2 Conclusions .. 228
 8.3 Recommendations for future work .. 230
References .. 231
List of Figures

Figure 1.1: Ferrocement sandwich panel composed of two skin layers and AAC blocks..... 2

Figure 2.1: Dependence of the mechanical properties of AAC on the bulk density (Tada, 1986).. 9

Figure 3.1: Compressive strength test for mortar cubes ... 23

Figure 3.2: Roll of welded wire mesh .. 25

Figure 3.3: Compressive strength testing for AAC bricks .. 26

Figure 3.4: Thermal conductivity specimens ... 27

Figure 3.5: Thermal conductivity testing .. 28

Figure 3.6: Axial compression loading control specimen setup 29

Figure 3.7: Axial compression loading ferrocement specimen setup 30

Figure 3.8: Shear connectors in specimens of axial compression loading testing 30

Figure 3.9: Flexure loading ferrocement specimen setup ... 31

Figure 3.10: Shear connectors in specimens of flexural loading testing 32

Figure 3.11: Lateral loading control solid specimen setup ... 33

Figure 3.12: Lateral loading control specimen with window opening setup 34

Figure 3.13: Lateral loading control specimen with door opening setup 34

Figure 3.14: Lateral loading ferrocement solid wall specimen setup 36

Figure 3.15: Lateral loading ferrocement wall specimen with window opening setup 36

Figure 3.16: Lateral loading ferrocement wall specimen with door opening setup 37

Figure 3.17: Nails shear connectors in specimens of lateral loading testing 37

Figure 3.18: Multi channel data acquisition system .. 38

Figure 3.19: Compressive strength test setup .. 39

Figure 3.20: Flexure loading test setup ... 41
Figure 3.21: Multi channel data acquisition and Lateral loading specimen setup 42
Figure 3.22: Distribution of LVDT for all specimens ... 42
Figure 3.22: Distribution of strain gauges and LVDT for all lateral loading test specimens ... 44
Figure 4.1: Load-strain and load-displacement relationships for Specimen C1 49
Figure 4.2: Load-strain and load-displacement relationships for Specimen C2 51
Figure 4.3: Load-strain and load-displacement relationships for Specimen C3 54
Figure 4.4: Load-strain and load-displacement relationships for Specimen C4 56
Figure 4.5: Load-strain and load-displacement relationships for Specimen C5 58
Figure 4.6: Load-strain and load-displacement relationships for Specimen C6 60
Figure 4.7: Load-strain and load-displacement relationships for Specimen C7 63
Figure 4.8: Load-strain and load-displacement relationships for Specimen C8 65
Figure 4.9: Load-strain relationships for Specimen C9 ... 67
Figure 4.10: Load-strain and load-displacement relationships for Specimen C10 69
Figure 4.11: Load-strain and load-displacement relationships for Specimen C11 71
Figure 4.12: Load-strain and load-displacement relationships for Specimen C12 72
Figure 4.13: Load-strain and load-displacement relationships for Specimen C13 75
Figure 4.14: Load-strain and load-displacement relationships for Specimen C14 77
Figure 4.15: Load-strain and load-displacement relationships for Specimen C15 79
Figure 4.16: Load-strain and load-displacement relationships for Specimen C16 81
Figure 4.17: Load-strain and load-displacement relationships for Specimen C17 83
Figure 4.18: Load-strain and load-displacement relationships for Specimen C18 86
Figure 4.19: Load-strain and load-displacement relationships for Specimen C19 88
Figure 4.20: Load-strain and load-displacement relationships for Specimen C20 90
Figure 4.21: Load-strain and load-displacement relationships for Specimen C21............. 92
Figure 4.22: Load-strain and load-displacement relationships for Specimen C22............. 94
Figure 4.23: Load-strain and load-displacement relationships for Specimen C23............. 95
Figure 4.24: Failure of designation (150-Control)... 97
Figure 4.25: Failure of designation (150-FC-Nails)... 98
Figure 4.26: Failure of designation (150-FC-WM)... 99
Figure 4.27: Failure of designation (250-Control)... 100
Figure 4.28: Failure of designation (250-FC-Nails)... 101
Figure 4.29: Failure of designation (250-FC-WM)... 102
Figure 4.30: Average compressive strength for different designations with varying in thicknesses .. 104
Figure 4.31: Average failure load for different designations with varying in thicknesses .. 104
Figure 4.32: Comparison between specimens from designation (150-Control) and (250-Control) ... 105
Figure 4.33: Average compressive strength for different designations with varying in shear connectors.. 106
Figure 4.34: Comparison between specimens from designation (150-FC-Nails) and (150-FC-WM) ... 106
Figure 4.35: Average compressive strength for different designations with varying in mortar matrix strength.. 107
Figure 4.36: Comparison between specimens from designation (250-Control) and (250-FC-WM) ... 108
Figure 5.1: Load-strain relationship for Specimen B1 at strain gauge S1 114
Figure 5.2: Load-strain relationships for Specimen B2.. 115
Figure 5.3: Load-strain relationships for Specimen B3.. 116
Figure 5.4: Load-strain relationships for Specimen B4.. 117
Figure 5.5: Load-strain relationships for Specimen B5 ... 118

Figure 5.6: Typical failure pattern of specimen B1 ... 119

Figure 5.7: Failure of specimen B2 .. 120

Figure 5.8: Failure of specimen B3 .. 121

Figure 5.9: Failure of specimen B4 .. 122

Figure 5.10: Failure of specimen B5 ... 123

Figure 5.11: Average ultimate load for different designations with varying in shear connectors .. 124

Figure 5.12: Comparison between specimens from designation (150-FC-Cross) and (150-FC-WM) ... 125

Figure 5.13: Stress and strain distribution of a section .. 126

Figure 6.1: Load-strain and load-displacement relationships for Specimen L1 137

Figure 6.2: Failure of specimen L1 .. 138

Figure 6.3: Load-strain and load-displacement relationships for Specimen L3 145

Figure 6.4: Failure of specimen L3 .. 145

Figure 6.5: Load-strain and load-displacement relationships for Specimen L5 152

Figure 6.6: Failure of specimen L5 .. 152

Figure 6.7: Load-strain and load-displacement relationships for Specimen L2 158

Figure 6.8: Failure of specimen L2 .. 158

Figure 6.9: Load-strain and load-displacement relationships for Specimen L4 165

Figure 6.10: Failure of specimen L4 ... 166

Figure 6.11: Load-strain and load-displacement relationships for Specimen L6 172

Figure 6.12: Failure of specimen L6 ... 172

Figure 6.13: Load-strain and load-displacement relationships for Specimen L7 179

Figure 6.14: Failure of specimen L7 ... 179
Figure 6.15: Load-strain and load-displacement relationships for Specimen L8 186
Figure 6.16: Failure of specimen L8 .. 186
Figure 6.17: Load-strain and load-displacement relationships for Specimen L9 194
Figure 6.18: Failure of specimen L9 .. 194
Figure 6.19: Load-strain and load-displacement relationships for Specimen L10 202
Figure 6.20: Failure of specimen L10 .. 202
Figure 6.21: Ultimate Lateral load for different specimen with varying in thicknesses 203
Figure 6.22: Load-displacement comparison between specimens L8 and L10 204
Figure 6.23: Ultimate Lateral load for different specimens with and without ferrocement ... 205
Figure 6.24: Load-displacement comparison between specimens L9 and L10 205
Figure 6.25: Ultimate Lateral load for different specimens with and without opening 206
Figure 6.26: Load-displacement comparison between specimens L1, L3, and L5........ 207
Figure 7.1: The three dimensional analytical ANSYS models .. 209
Figure 7.2: The three dimensional analytical ANSYS models (ANSYS user manual, 2012) ... 210
Figure 7.3: Boundary conditions of masonry wall model... 211
Figure 7.4: Dimensions of control and ferrocement wall model 212
Figure 7.5: Displacement of control masonry wall model ... 216
Figure 7.6: Comparison between model and experimental Load-displacement relationship ... 216
Figure 7.7: Control wall model cracking pattern .. 217
Figure 7.8: Experimental cracking pattern ... 218
Figure 7.9: Displacement of ferrocement masonry wall model ... 219
Figure 7.10: Comparison between model and experimental Load-displacement relationship ... 220

Figure 7.11: Ferrocement wall model cracking pattern ... 221

Figure 7.12: Experimental cracking pattern ... 221

Figure 7.13: Failure load for different models with varying in mortar matrix strength 222

Figure 7.14: The load-displacement curves for the different three numerical models with varying in mortar matrix strength ... 223

Figure 7.15: Failure load for different models with varying in ferrocement layer thickness ... 224

Figure 7.16: The load-displacement curves for the different three numerical models with varying in ferrocement layer thickness ... 225

Figure 7.17: Failure load for different two models with single and double mesh reinforcement ... 226

Figure 7.18: The load-displacement curve for the double mesh reinforcement 226
List of Tables

Table 2.1: AAC in Different Strength Classes (R. E. Klingner, 2010)................................. 9
Table 2.2: Guidelines on Desirable Sand Grading (www.set.ait.ac.th)................................. 11
Table 2.3: The mandatory chemical limits for mortar mixing water (www.concrete.net) 11
Table 3.1: Designations for three types of testing .. 20
Table 3.2: Typical testing results of Ordinary Portland Type I cement (Torah Company).. 21
Table 3.3 Chemical composition of silica fume (the Egyptian Ferroalloys Company “EFACO”)... 22
Table 3.4: Mix proportion of mortar.. 23
Table 3.5: Mortar compressive strength results.. 24
Table 3.6: Specifications of Galvanized welded wire mesh .. 24
Table 3.7: AAC bricks testing results .. 25
Table 3.8: AAC compressive strength results.. 26
Table 3.9: AAC moisture content and bulk density results .. 27
Table 4.1: Experimental results of the in-plane compressive strength 46
Table 4.2: Comparison between experimental and theoretical compressive strength results .. 111
Table 5.1: Experimental results of the out-of-plane bending test ... 113
Table 5.2: Comparison between experimental and theoretical ultimate load results 129
Table 6.1: Experimental results of the lateral loading test... 131
Table 7.1: Material Properties for control wall model.. 213
Table 7.2: Material Properties for ferrocement wall model.. 214