"For Ehlimana, Haya and Ammar"
I would like to thank my father who always has vision and wisdom. He has provided me with guidance and support throughout my professional career. My deep gratitude to my mother who blessed me with her life and continuous prayers. And to my loving wife who is always understanding and supportive.

I would like to express my deep gratitude to my advisor, Dr. Mohamed Nagib Abou-Zeid, for his effort in supervising this research work. Dr. Abou-Zeid has supported my comeback, and guided me with his experience, scientific thinking and integrity. He has given me his effort and patience for which I will always be grateful. I would like to thank my examining committee, Dr. Amr Ezzat Salama Counselor of the American University in Cairo and Former Minister of Higher Education, Dr. Moustafa El Demirdash Professor of Engineering at the University of Helwan and Dr. Samer Ezeldin Director of Graduate Program at Construction Engineering Department.

I would like to express my gratitude to construction laboratory staff who helped me throughout my experimental work; Eng. Mamdouh, Fares, Ragab and Haitham. Special thanks to Eng. Nazira El Baghdady, Eng. Engy Samir, Eng. Dina Abou Alia and my business supervisor Taha Abdel-Kader who helped with my experimental work logistics.
Concrete is a major construction material known for its strength and durability. For long it has been considered an aesthetically unfriendly and dull material that should be hidden beneath layers of plaster and paint. Pigmented concrete is a relatively new type of concrete that offers higher chromatic qualities for architectural projects than paints. With the recent trend of urban color aiming at rendering cities with attractive color schemes using rich texture offered by conventional construction materials, pigmented concrete has become a preferable choice for building exteriors. Today, renowned architects use pigmented concrete that fulfils aesthetic and technical requirements in addition to its advantages in terms of maintenance and durability.

This study aims at achieving a better understanding of pigmented concrete and exploring its potential properties and applications. The main objective is to assess the impact of parameters such as cement color and pigment dosage on mechanical properties and color stability. Concrete specimens were made using grey and white cements and three different dosages of red, yellow and green pigments. The testing scheme includes fresh, hardened concrete and durability properties as well as color performance assessment. These tests were developed specifically for the purpose of this research work.

On the whole, pigmented concrete had lower mechanical properties than conventional concrete mixtures, yet, the reduction in strength still allows many of these mixtures to be used in structural concrete. The intermediate dosages of used pigments seem to be more adequate for both mechanical properties and color stability. Pigmented mixtures with white cement had somewhat less mechanical properties possibly due to the cement manufacturing scheme while pigmentation effect was more vivid than mixtures with grey cement. Compared with control unpigmented mixture, the average drop in compressive strength ranged between 10 percent for pigmented grey concrete mixtures and 20 percent for pigmented white concrete mixtures. The technique used for color assessment and color stability with time has repeatable results and is recommended for future use in similar studies. Applicators are encouraged to use pigmented concrete for applications involving long term pigmented effect with minimal concrete finishes.

Keywords: (Concrete, Architectural, Pigments, Color Measurement, Digital Imaging)
TABLE OF CONTENTS

List of Tables

List of Figures

CHAPTER 1 - INTRODUCTION

1. Background .. 1
1.1 Background ... 1
1.2 Architectural Concrete .. 2
 1.2.1 Untreated Concrete .. 3
 1.2.2 Treated Concrete .. 7
 1.2.3 Decorative Concrete Art .. 8
1.3 Statement of the Problem .. 9
1.4 Work Objectives and Scope ... 10

CHAPTER 2 - LITERATURE REVIEW

2.1 Color and Architecture ... 12
2.2 Color at the City Scale ... 12
 2.2.1 Turin Color Plan .. 14
 2.2.2 Kirchsteigfeld Color Plan .. 15
 2.2.3 Environmental Color .. 17
2.3 Decorative Concrete Applications and Finishes ... 18
 2.3.1 Integral Colors .. 18
 2.3.2 Dry-shake Color Hardeners ... 18
 2.3.4 Stamped Concrete ... 22
 2.3.5 Exposed Aggregate Finishes .. 23
 2.3.6 Overlay Cement .. 24
 2.3.7 Paper Stencil Patterning .. 25
 2.3.8 Sandblast Stenciling ... 26
 2.3.9 Architectural Walls Form liners .. 27
2.9.2 Mixing Considerations...60
2.10 Final Acceptance Considerations..65
2.11 Maintenance Considerations...69

CHAPTER 3 - EXPERIMENTAL WORK...67
3.1 Materials..67
 3.1.1 Grey Portland Cement..67
 3.1.2 White Portland Cement..67
 3.1.3 Fine Aggregates...69
 3.1.4 Coarse Aggregates..70
 3.1.5 Water...70
 3.1.6 Pigments..71
3.2 Apparatus and Procedure...73
 3.2.1 Aggregates Testing..73
 3.2.2 Cement Testing..73
 3.2.3 Concrete Mixtures..74
 3.2.4 Fresh Concrete Testing..75
 3.2.5 Specimen Preparation..76
 3.2.6 Hardened Concrete Testing...78
 3.2.7 Pigment Color Performance Monitoring...81

CHAPTER 4 - RESULTS AND ANALYSIS..89
4.1 Fresh Concrete ..89
 4.1.1 Workability...89
 4.1.2 Air Content..92
 4.1.3 Unit Weight...94
4.2 Hardened Concrete ...96
 4.2.1 Compressive Strength..96
 4.2.2 Flexural Strength...108
 4.2.3 Rapid Chloride Permeability Test (RCPT) ...113
4.2.5 Color Performance Monitoring by Digital Imaging..118
4.2.6 Visual Color Assessment...137

CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS..............................141
5.1 Conclusions..141
5.3 Recommendations for Future Work...143
5.3 Recommendations for Applicators...144

References...149
Appendices..154
Appendix A: Colorimetry and Photography Glossary...155
Appendix B: Digital Images Captured at 7, 28 and 56 Days...............................159
List of Tables

Table 3.1 Typical Results of Standard Testing of Grey Cement Used 68
Table 3.2 Typical Results of Standard Testing of White Cement Used 68
Table 3.3 Typical Results of Standard Testing of the Fine Aggregate Used 69
Table 3.4 Gradation for the Fine Aggregate Used 69
Table 3.5 Gradation for the Coarse Aggregate Used 70
Table 3.6 Typical Results of Standard Testing of the Coarse Aggregate Used 71
Table 3.7 Typical Properties of Powder Color Pigments Used 72
Table 3.8 Groups of Mixtures 77
Table 4.1 Fresh Concrete Results 90
Table 4.2 Compressive Strength Results 97
Table 4.3 28-Day Flexural Strength Results 109
Table 4.4 Rapid Chloride Permeability Results 114
Table 4.5 Color Performance Results for Pigmented Red Mixtures after 7, 28 and 56 Days 121
Table 4.6 Color Performance Results for Pigmented Yellow Mixtures after 7, 28 and 56 Days 122
Table 4.7 Color Performance Results for Pigmented Green Mixtures after 7, 28 and 56 Days 123
Table 5.1 Summary Conclusions for Mixtures' Performance 148
List of Figures

Figure 1.1 Arsta Bridge designed by Sir Norman Forester 4
Figure 1.2 ESO Hotel blending with desert tones 5
Figure 1.3 South Africa's 2010 World Cup City Stadium 6
Figure 1.4 Rooftop of Gaudi's Casa Mila decorations 8
Figure 1.5 Felix Potin's concrete 8
Figure 1.6 Finished vertical decorative installation by carving concrete 9
Figure 1.7 Life-sized pH-neutral concrete sculptures that help coral growth 9
Figure 2.1 A column on Millennium Verandah designed by John Outram 13
Figure 2.2 Computer-controlled color changing lighting concept at Burj Al Arab tower in Dubai 14
Figure 2.3 Turin Color Plan showing processional routes with designated colors 15
Figure 2.4 Kirchsteigfeld colored center zone 16
Figure 2.5 Urban mapping of Marseilles city 17
Figure 2.6 Residential pool area uses integrally colored concrete that creates a natural look with surrounding environment 18
Figure 2.7 Brick pattern produced using a terra cotta color hardener and grey release while the star area was imprinted with a slate skin colored with buff hardener and grey release. Brass letters were embedded in plastic concrete 19
Figure 2.8 Variegated appearance of chemical stains using classic accents 20
Figure 2.9 Acid-based stains can provide personalized artwork 21
Figure 2.10 Water-based stains produce bright uniform colors 21
Figure 2.11 Stamping concrete patterns using a "walk-on" technique 22
Figure 2.12 Spraying pigmented overlay cement

Figure 2.13 Stenciling with paper patterns on fresh concrete, applying hardeners then stencils are removed

Figure 2.14 Removing parts of computer-cut template before sandblasting the floor for a final stunning look

Figure 2.15 Precast architectural form liners

Figure 2.16 A cafeteria concrete floor that was saw-cut in a curved pattern followed by application of different colors of chemically reactive stains and finally polishing to give an attractive new look

Figure 2.17 Integral countertops, sinks and bathtubs can be achieved for interior decorative applications

Figure 2.18 Hand painted glass inlays that glow with black light illumination

Figure 2.19 Light rays passing through concrete embedded with optical fibers

Figure 2.20 Precast photo-engraved concrete panels

Figure 2.21 Inorganic pigments are finely interground particles produced in a variety of colors

Figure 2.22 SEM picture of red pigment

Figure 2.23 SEM picture of yellow pigment

Figure 2.24 SEM picture of green pigment

Figure 2.25 Munsell color system

Figure 2.26 NCS color system

Figure 2.27 CIELAB or L*a*b* color space

Figure 2.28 Different color gamuts

Figure 2.29 Non-linear luminosity values of grey scale levels

Figure 2.30 Effect of Efflorescence on Pigmented Concrete
Figure 2.31 Spacing of tie rods, bolts and tie holes joints should be considered with architectural and pigmented concrete

Figure 2.32 Storage tanks of primary pigments that are pumped into liquid dispensing system using a computerized program

Figure 3.1 Experimental Program Testing Chart

Figure 3.2 Specimen Preparation for Hardened Concrete Testing

Figure 3.3 Compressive Strength Testing

Figure 3.4 Flexural Strength Testing

Figure 3.5 RCPT Proove-it Control Apparatus

Figure 3.6 RCPT Cell Units

Figure 3.7 Standard Setup for Acquiring Digital Images for all Specimens

Figure 3.8 Adobe Photoshop CS5 main screen for RAW correction procedure

Figure 3.9 Cropping Concrete Surface for Color Measurement

Figure 3.10 Modifying from RGB to L*a*b* space in Adobe Photoshop CS5

Figure 3.11 Adobe Photoshop CS5 main screen for RAW correction

Figure 3.12 Using Adobe CS5 L*a*b* Histogram & measurement

Figure 4.1 Slump Test Results

Figure 4.2 Air Content Result

Figure 4.3 Unit Weight Test Results

Figure 4.4 7-Day Compressive Strength Results

Figure 4.5 28-Day Compressive Strength Results

Figure 4.6 56-Day Compressive Strength Results

Figure 4.7 The Ratio between 28-Day Compressive Strength Results of Pigmented and Unpigmented Mixtures
Figure 4.8 The Ratio between 56-Day Compressive Strength Results of Pigmented and Unpigmented Mixtures

Figure 4.9 The Ratio between 7-Day and 28-Day Compressive Strength Results

Figure 4.10 The Ratio between 28-Day and 56-Day Compressive Strength Results

Figure 4.11 28-Day Flexural Strength Results

Figure 4.12 Ratio between 28-Day Flexural and Compressive Strength Results

Figure 4.13 Ratio between Experimental and Estimated Flexural Strength Results Using Eq.4.1

Figure 4.14 Rapid Chloride Permeability Results

Figure 4.15 Color saturation at 7, 28 and 56 days for mixtures RG7 and YG10

Figure 4.16 Color saturation at 7, 28 and 56 days for mixtures GG3, GG5 and GW3

Figure 4.17 Color Saturation for Mixtures RW7 and RW5

Figure 4.18 Color Saturation for Mixtures YG10 and YW3

Figure 4.19 Color Saturation for Mixtures GG3 and GW3

Figure 4.20 7-days Color Saturation (C*) Results

Figure 4.21 28-days Color Saturation (C*) Results

Figure 4.22 56-days Color Saturation (C*) Results

Figure 4.23 7-days Total Color Difference (∆E*) Results

Figure 4.24 28-days Total Color Difference (∆E*) Results

Figure 4.25 56-days Total Color Difference (∆E*) Results

Figure 4.26 Color Saturation for Mixtures RG10 and RW3

Figure 4.27 Color Saturation for Mixtures YW5 and YW7

Figure 4.28 Color Saturation for Mixtures YG3 and YG7

Figure 4.29 Visual Difference (∆E*) for mixtures GG7 and GG5
Figure 4.30 Color Saturation for Mixtures RG10 and RG7 138
Figure 4.31 Color Saturation for Mixtures YG3 and YG7 139
Figure 4.32 Color Saturation for Mixtures GW5 and GW7 140