Show simple item record

dc.contributor.advisor Amer, Hassanein Sadek, Noha 2015-05-24T13:29:20Z 2017-05-23T22:00:14Z 2015 Spring en_US 2015-05-24
dc.description.abstract Intelligent Transportation Systems (ITS) make use of advanced technologies to enhance road safety and improve traffic efficiency. It is anticipated that ITS will play a vital future role in improving traffic efficiency, safety, comfort and emissions. In order to assist the passengers to travel safely, efficiently and conveniently, several application requirements have to be met simultaneously. In addition to the delivery of regular traffic and safety information, vehicular networks have been recently required to support infotainment services. Previous vehicular network designs and architectures do not satisfy this increasing traffic demand as they are setup for either voice or data traffic, which is not suitable for the transfer of vehicular traffic. This new requirement is one of the key drivers behind the need for new mobile wireless broadband architectures and technologies. For this purpose, this thesis proposes and investigates a heterogeneous IEEE 802.11 and LTE vehicular system that supports both infotainment and ITS traffic control data. IEEE 802.11g is used for V2V communications and as an on-board access network while, LTE is used for V2I communications. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban vehicular environment. The system performance is evaluated in terms of data loss, data rate, delay and jitter. Several simulation scenarios are performed and evaluated. In the V2I-only scenario, the delay, jitter and data drops for both ITS and video traffic are within the acceptable limits, as defined by vehicular application requirements. Although a tendency of increase in video packet drops during handover from one eNodeB to another is observed yet, the attainable data loss rate is still below the defined benchmarks. In the integrated V2V-V2I scenario, data loss in uplink ITS traffic was initially observed so, Burst communication technique is applied to prevent packet losses in the critical uplink ITS traffic. A quantitative analysis is performed to determine the number of packets per burst, the inter-packet and inter-burst intervals. It is found that a substantial improvement is achieved using a two-packet Burst, where no packets are lost in the uplink direction. The delay, jitter and data drops for both uplink and downlink ITS traffic, and video traffic are below the benchmarks of vehicular applications. Thus, the results indicate that the proposed heterogeneous system offers acceptable performance that meets the requirements of the different vehicular applications. All simulations are conducted on OPNET Network Modeler and results are subjected to a 95% confidence analysis. en_US
dc.format.extent 100 p. en_US
dc.format.medium theses en_US
dc.language.iso en en_US
dc.rights Author retains all rights with regard to copyright. en
dc.subject Intelligent transportation en_US
dc.subject.lcsh Thesis (M.S.)--American University in Cairo en_US
dc.subject.lcsh Intelligent transportation systems.
dc.subject.lcsh Heterogeneous computing.
dc.subject.lcsh Wireless LANs.
dc.subject.lcsh Intelligent transportation
dc.title Heterogeneous LTE/ Wi-Fi architecture for intelligent transportation systems en_US
dc.type Text en_US
dc.subject.discipline Electronics Engineering en_US
dc.rights.access This item is restricted for 2 years from the date issued en_US
dc.contributor.department American University in Cairo. Dept. of Electronics Engineering en_US
dc.description.irb American University in Cairo Institutional Review Board approval is not necessary for this item, since the research is not concerned with living human beings or bodily tissue samples. en_US
dc.contributor.committeeMember El-Soudani, Magdy
dc.contributor.committeeMember Abdel-Azeem, Sherif
dc.contributor.committeeMember Daoud, Ramez

Files in this item


This item appears in the following Collection(s)

  • Theses and Dissertations [1863]
    This collection includes theses and dissertations authored by American University in Cairo graduate students.

Show simple item record