Show simple item record

dc.contributor.advisor Azzazy, Hassan
dc.contributor.author Abouzekry, Sara
dc.date.accessioned 2018-08-26T07:27:53Z
dc.date.available 2018-08-26T22:00:24Z
dc.date.created Summer 2018 en_US
dc.date.issued 2018-08-26
dc.identifier.uri http://dar.aucegypt.edu/handle/10526/5466
dc.description.abstract In spite of the emerging advances in the field of wound dressings, there is still a deep need for the development of novel natural based dressings to offer a safe alternative for traditional wound dressings and most importantly fight against antibacterial resistance. The aim of this study is to develop novel honey based nanofibrous wound dressing for achieving both effective and safe treatment and investigate the dressings for antibacterial activity, cytotoxicity and in vivo wound healing effect in a rat wound model. Natural products; Honey, Pomegranate peel extract (PPP), and bee venom (BV), known for their antibacterial and anti-inflammatory properties, were used in combination with Polyvinyl alcohol (PVA), to develop a novel natural-based nanofibrous wound dressing. Methanolic pomegranate peel extract was prepared and mixed with either Manuka honey (MH) or lyophilized multiflora honey powder (LH). By testing electrospun samples: (10% MH/ 1% PPP), (20% MH/ 2% PPP) and (25%/ 2.5%PPP) against S. aureus, it was shown that antibacterial activity increases with increasing the MH/PPP concentration. BV was added to the honey/PPP combination to prepare (25 % MH/2.5 % PPP/ 0.01%BV) and (25 % LH/2.5 % PPP/0.01% BV) nanofibers. Scanning electron microscopy (SEM) showed that all samples had good morphology with no beads. Samples showed moderate swelling capacity in comparison to PVA while all samples showed better water loss capacity than PVA. Antibacterial tests showed significant antibacterial activity against both strains tested compared to both controls used (P< 0.0001). Against S. aureus, samples containing BV were slightly more effective than the sample without BV (P < 0.05). Against E. coli, sample (MH/PPP/BV) was slightly more effective than sample (LH/PPP/BV) (P < 0.05). In the cytotoxicity assay, all samples showed 100 - 120 % viability which indicated that the produced dressings have no significant cytotoxic effects. Results of the in vivo wound healing assay showed that treatment groups (25% MH/2.5%PPP), (25% MH/2.5%PPP/ 0.01 %BV), and (25% LH/2.5 %PPP/ 0.01% BV) had a significantly decreased wound surface areas compared to both controls at days 3 and day 5 (P <0.0001). All treatment groups reached complete healing by day 10 compared to day 14 in the case of both controls. On the histological side, PVA control group showed poor healing compared to all treatment groups. MH/PPP/BV sample micrographs showed excellent healing at day 10 resembling intact skin as shown by histological assessment. These results indicate that MH/PPP/BV combination can be considered as a promising formula to promote wound healing. However, further analysis is required to confirm the results and address the potential of the combination on more challenging wounds. en_US
dc.description.sponsorship I would like to express my deepest gratitude to all who contributed in my thesis project. First, I would like to thank my thesis supervisor Dr. Hassan Azzazy for his guidance and support during thesis work. I would like to thank him for believing in my ideas, supporting my research and allowing me to learn and grow as a scientist. I am extremely thankful to all the time and effort he spent on guiding me. Also I would like to thank my co-supervisor Dr. Ahmad Abdel-Latif for his support, Kindness and patience throughout the project. I couldn’t have done anything without his continuous support and encouragement. In addition, I would like to express my thanks and gratitude to Nano-ebers LLC, where I learned a lot and grew as a researcher. I truly appreciate joining the promising startup company. I had the opportunity of gaining knowledge not only on developing biocompatible nano-fibrous wound dressings but also i am gaining an experience on how to deliver the startup’s products to the market. This has been an exciting experience that I was honored to be a part of. I would also like to thank all the professors in the Biotechnology program who have been a true role model for me, taught me and allowed me to have a strong base knowledge in Biotechnology. My deep appreciation goes to my colleagues for always offering advice and help which has helped me a lot in my thesis work. I’m sincerely grateful to Diana Samy, Razan Msaad, Nagruess Marei, Myret Ghabriel, Sara Hassan, Salma Elshafei, James Kegere, Nancy Ahmad, Sara Kamel and Hagar Nofal for their scientific advice and help in the laboratory work. I would like to thank Amgad Ouaf for helping me while i was still learning the antibacterial tests. Special thanks goes to Marina Nabil for her help and encouragement while I was doing the antibacterial tests. I would also like to thank all the lab members and colleagues for all the interesting discussions we had which resulted in a productive knowledge transfer between us. Last but not least, I would to express my extreme gratitude and appreciation to Alalfi foundation for funding my studies. I am honored to be the recipient of this scholarship and extremely grateful for all the efforts made by the foundation. In addition, i would like to express my gratitude to the AUC for providing the research grant that funded this research project and for partially funding my studies through the laboratory instruction fellowship. en_US
dc.format.extent 96 p. en_US
dc.format.medium theses en_US
dc.language.iso en en_US
dc.rights Author retains all rights with regard to copyright. en
dc.subject Nanofibers en_US
dc.subject Wound healing honey en_US
dc.subject Pomegranate Peel Extract en_US
dc.subject Electrospining en_US
dc.subject Bee Venom en_US
dc.subject Manuka honey en_US
dc.subject.lcsh Thesis (M.A.)--American University in Cairo en_US
dc.title Fabrication of pomegranate peel extract/honey nanofibers loaded with bee venom as effective antibacterial wound dressings en_US
dc.type Text en_US
dc.subject.discipline Biotechnology en_US
dc.rights.access This item is available en_US
dc.contributor.department American University in Cairo. Dept. of Biology en_US
dc.description.irb American University in Cairo Institutional Review Board approval is not necessary for this item, since the research is not concerned with living human beings or bodily tissue samples. en_US
dc.contributor.committeeMember Abdel-Latif, Ahmed
dc.contributor.committeeMember El-Ghobashy, Medhat
dc.contributor.committeeMember Mamdouh, Wael
dc.contributor.committeeMember Abdelnasser, Anwar


Files in this item

Icon
Icon

This item appears in the following Collection(s)

  • Theses and Dissertations [1728]
    This collection includes theses and dissertations authored by American University in Cairo graduate students.

Show simple item record